インサイト

Quant Chart: Who's afraid of the Tariff Man?

Speculation, announcements, reversals, and legal battles over tariffs have so far dominated market headlines in 2025. As a result, companies are once again discussing the potential impact of tariffs on their business models. But are they mostly worried, broadly neutral, or are some even seeing opportunities?

執筆者

    Researcher
    Portfolio Manager
    Researcher

Tariffs returned to the spotlight in financial markets once it became clear that self-proclaimed ‘Tariff Man’ Donald Trump was set to return to the White House. Attention increased further following ‘Liberation Day’ on 2 April, when Trump announced a new round of ‘reciprocal’ tariffs.1

Tariff talk

Since then, tariffs have been a recurring topic in both markets and boardrooms. Figure 1 below illustrates this trend. Each bar represents the number of MSCI World Index constituents that mentioned tariffs in their earnings calls, quarter by quarter. 2 While the topic was prominent during Trump's first term, the number of companies referencing tariffs has since doubled from the Q3 2018 peak, with 600 out of 862 companies mentioning tariffs in the current (and still-ongoing) quarter.

Figure 1 | Tariffs in company communication

Source: Robeco, MSCI, FactSet.
The figure shows the number of firms mentioning “tariffs” in earnings call conferences. The bars break down the sentiment around tariffs into “worried”, “neutral”, and “opportunistic”, and the purple line indicates the share of “worried” firms among those discussing tariffs. The analysis includes all MSCI World Index constituents and covers the period from January 2016 through 29 May 2025, by which time earnings call data was available for 64% of the constituents.

Beyond the sheer number of companies mentioning tariffs, investors are also interested in the tone of those discussions. Are companies mainly worried, broadly neutral, or might some even be perceiving opportunities?


Reading between the words

To extract such insights, we apply modern natural language processing (NLP) techniques to analyze earnings calls.3 In the chart above, the different bar segments indicate the sentiment classification according to our proprietary NLP sentiment pipeline. Notably, most companies spoke neutrally (orange) about tariffs. However, in periods when tariffs are high on the agenda, such as in 2018/2019 or now (April/May 2025), the share of companies expressing concerns increases, as illustrated by the purple line. At the same time, a small group of companies continues to see tariffs as opportunities.4

The tariff case shows how NLP can help investors extract sentiment from unstructured data – such as corporate filings, news articles, earnings calls, management interviews, and social media – and spot shifts in market narratives, even when the topic itself ebbs and flows over time. As these tools become more sophisticated, their role in identifying broader themes, tracking their evolution, and measuring associated sentiment continues to grow.

The real value of NLP

These advances mean the questions investors ask themselves are also evolving: from our tongue-in-cheek, ‘Who’s afraid of the Tariff Man?’ to the more serious, ‘What else can AI tools like NLP help us understand?’ Such next-gen quant capabilities – as well as knowing how to use them – are increasingly relevant, both for quantitative but also for thematic investors aiming to capture both emerging and established trends.

Dynamic Theme Machine

Learn how such tools are applied in a systematic investment context

Read more

Footnotes

1 For more details on how the reciprocal tariffs were computed, see Nangle T., April 2025, “The stupidest chart you’ll see today”, Financial Times.
2 Earnings call coverage typically ranges from 60% to 85% of MSCI World Index constituents, depending on the quarter.
3 Unlike structured financial or market data, text data from sources such as earnings calls, news articles, or management interviews is unstructured and context-dependent. Early methods like ‘Bag of Words’ have long been used to quantify sentiment, but they lack the ability to capture relationships between words. More advanced NLP techniques can address this by using contextual embeddings – such as FinBERT – or transformer-based models like GPT, which better interpret meaning in context.
4 Analyzing sentiment at the sector level highlights the effectiveness of our NLP pipeline. On average, companies in Utilities, Communication Services, and Financials express less concern about tariffs, while those in Information Technology, Consumer Discretionary, and Consumer Staples tend to be more worried.

Quant Charts

重要事項

当資料は情報提供を目的として、Robeco Institutional Asset Management B.V.が作成した英文資料、もしくはその英文資料をロベコ・ジャパン株式会社が翻訳したものです。資料中の個別の金融商品の売買の勧誘や推奨等を目的とするものではありません。記載された情報は十分信頼できるものであると考えておりますが、その正確性、完全性を保証するものではありません。意見や見通しはあくまで作成日における弊社の判断に基づくものであり、今後予告なしに変更されることがあります。運用状況、市場動向、意見等は、過去の一時点あるいは過去の一定期間についてのものであり、過去の実績は将来の運用成果を保証または示唆するものではありません。また、記載された投資方針・戦略等は全ての投資家の皆様に適合するとは限りません。当資料は法律、税務、会計面での助言の提供を意図するものではありません。 ご契約に際しては、必要に応じ専門家にご相談の上、最終的なご判断はお客様ご自身でなさるようお願い致します。 運用を行う資産の評価額は、組入有価証券等の価格、金融市場の相場や金利等の変動、及び組入有価証券の発行体の財務状況による信用力等の影響を受けて変動します。また、外貨建資産に投資する場合は為替変動の影響も受けます。運用によって生じた損益は、全て投資家の皆様に帰属します。したがって投資元本や一定の運用成果が保証されているものではなく、投資元本を上回る損失を被ることがあります。弊社が行う金融商品取引業に係る手数料または報酬は、締結される契約の種類や契約資産額により異なるため、当資料において記載せず別途ご提示させて頂く場合があります。具体的な手数料または報酬の金額・計算方法につきましては弊社担当者へお問合せください。 当資料及び記載されている情報、商品に関する権利は弊社に帰属します。したがって、弊社の書面による同意なくしてその全部もしくは一部を複製またはその他の方法で配布することはご遠慮ください。 商号等: ロベコ・ジャパン株式会社  金融商品取引業者 関東財務局長(金商)第2780号 加入協会: 一般社団法人 日本投資顧問業協会

重要なお知らせ 当社や当社役職員を装ったSNSアカウントやウェブサイト等を使った投資勧誘にご注意ください さらに表示